Как выращивать овощи в космосе

Содержание

Космические грядки: что и зачем выращивают в космосе?

Люди давно мечтали о космических полетах, о покорении вселенной, о путешествиях по дальним галактикам. Но в любое дальнее путешествие с собой нужно брать большой набор продуктов. А если полёт планируется на годы? А может дальше и дольше?
У учёных родилась идея — создать на космическом корабле оранжерею, которая будет обеспечивать путешественников не только овощами и фруктами, но и кислородом, и водой… Легко придумать, а как реализовать?

Космический конус Циолковского

Первым идею — выращивать растения в космосе — выдвинул основоположник космонавтики Константин Циолковский. Задолго до начала пилотируемых полетов он заявил, что в будущем растения станут главным источником питания и поддержания атмосферы на космических кораблях. Он придумал и сделал зарисовку, как можно решить проблему невесомости и отсутствия гравитации в условиях космоса.

«Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса — слой влажной почвы с насаженными в ней растениями».

К.Э. Циолковский «Цели звездоплавания» 1929 год

pic180 1

В этой работе К. Э. Циолковский подробно описал не только, как можно искусственно создать гравитацию для растений, но и продумал, какие это должны быть растения: плодовитые, мелкие, без толстых стволов. По его задумке такие растения смогут обеспечивать колонизаторов космоса биологически активными веществами и микроэлементами, а также регенерировать кислород и воду.

За много десятилетий до полётов в космос Константин Эдуардович понял проблему с которой в будущем столкнулись космонавты — от консервированной и сублимированной пищи многие из них теряли аппетит, начиналась депрессия и ели только потому, что это было необходимо для поддержания сил.

Первым обратил на это внимание норвежский биолог Силе Вольф, который не мог найти логичного объяснения — почему космонавты в полёте часто теряют в весе. А причина оказалась проста — недостаток аппетита.

На орбите — горох и пшеница

Самые первые растения, которые побывали в космосе — это кукуруза, пшеница, горох и лук. Впервые семена этих растений поднялись на орбиту Земли в августе 1960 года — семьдесят лет назад. Этот полёт был во много необычным. Он известен, как полёт знаменитых собак Белки и Стрелки, которые не только побывали в космосе, но и благополучно вернулись на землю. Но далеко не все знают, что вместе с двумя собаками в этом полёте побывали сорок мышей, две крысы и семена растений.

Первое растение, выращенное и съеденное в космосе — это обычный зелёный лук. Это произошло в 1978 году на космической станции «Салют-4». Космонавтам Владимиру Ковалёнку и Александру Иванченкову удалось вырастить перья лука в установке «Оазис».

Эксперимент предусматривал не только вырастить растение, но и добиться процесса цветения и получение семян. Центральный пункт управления полётами разрешил срезать несколько перьев лука, чтобы он не гнил. Только позже стало известно, что часть лука космонавты съели без разрешения начальства — таким сильным было желание настоящей растительной пищи. Сейчас эта установка «Оазис-1» находится в Мемориальном музее космонавтики.

Безусловно, первые установки для выращивания растений в космосе были не совершенны. Их постоянно дорабатывали, модернизировали, придумывали новые: «Оазис»,»Вазон», «Лютик» и другие установки сначала проходили испытания на Северном полюсе, потом отправлялись в космос, но результаты каждый раз были непредсказуемыми…

Вот только один случай, описанный космонавтом Георгием Гречко в книге «Космонавт № 34». Гидропонная установка была без земли, и горошины прорастали в марле с водой и раствором. Космонавт заметил, что в одной кювете воды почти нет, а в другой — слишком много и горошины начали подгнивать. Воды во второй кювете было так много, что капли срывались и плавали по всей станции.
В итоге космонавт несколько часов собирал летающие капли салфеткой, Потом поливал горошины вручную. И едва не погубил весь эксперимент. Он решил, что ростки запутались в марле, и стал руками разбирать их. В итоге выяснилось, что он перепутал корешки и стебельки.

Эксперимент закончился благополучно — космонавту удалось добиться полного цикла: от семечка до взрослого стебля. Но из 36 зерен гороха, которые были в установке «Оазис», взошли и выросли только три.

Космические сады

1971 год

Мало кто знает — первый космический сад уже есть. Правда он существует не в космосе, а на Земле. Он был создан через восемь лет после выхода фильма — в 1971 году, когда на корабле «Аполлон-14» в космическое путешествие отправились семена пяти хвойных и лиственных пород: сосна, пихта, секвойя, платан и ликвидамбар. Эти семена не просто побывали в космосе, но вместе с астронавтом Стюартом Руса на командном модуле облетели вокруг Луны.

Когда «Аполлон-14» вернулся на Землю, семена высадили и получилось 450 саженцев, которые разослали по всему миру. Несколько растений специально были высажены рядом со своими собратьями и ровесниками. Прошли годы. «Лунные» деревья выросли и уже ничем не отличаются от своего окружения.

1980 год

Советские учёные разработали и отправили в космос установку для выращивания растений «Малахит». Перед ними была поставлена задача — чтобы в космосе цвели орхидеи. Эти цветы были выбраны неслучайно. Известно, что они прекрасно растут на створах деревьев, в самых неблагоприятных условиях. Орхидеи отправили на станцию уже цветущими. К сожалению, эксперимент не удался, лепестки опали, но листья и воздушные корни продолжали благополучно развиваться…

Что только не придумывали учёные, чтобы помочь растениям справиться с невесомостью и зацвести! Они стимулировали корневую систему электромагнитными волнами и создавали центрифуги, наподобие той, что была описана К.Э. Циолковским.

1982 год

Добиться цветения удалось только во время полёта космической станции «Салют-6», которая была выведена на орбиту в 1977 году и вернулась на землю в 1982 году. Именно в этом полёте (на космической станции за пять лет сменилось пять экипажей) удалось добиться невозможного. В установке «Светоблок» зацвёл арабидопсис.

Это скромное растение с мелкими белыми цветами ещё называют резуховидка Таля, и она является родственницей горчицы и обычной капусты. Она не просто расцвела на космической станции, но и дала семена. Впервые в космосе прошёл полный цикл развития растения: от семян до семян!

Это чудо удалось осуществить благодаря бортовой оранжерее «Светоблок», в которой учёные соединили систему дозированного полуавтоматического полива, аэрации и электрического стимулирования корней, а также перемещение вегетационных сосудов с растениями относительно источника света.

2000 год

На космическую станцию была отправлена первая в мире автоматическая оранжерея. С её помощью космонавты в рамках эксперимента вырастили салаты, редис и пшеницу. Но настоящий прорыв произошел в 2014 году. На американской космической станции астронавтам в автоматической плантации удалось вырастить зелень не для опытов, а для обогащения рациона питания.

С тех пор космические путешественники могут питаться свежими салатами, и добавлять лук, петрушку, укроп и сельдерей в другие блюда. Нужно только помнить, что питание на орбите — процесс специфический и мало напоминает земное застолье.

Какие растения выращивают на космическом огороде?

Картофель, морковь, свёкла и помидоры — привычные овощи и корнеплоды наших огородов ещё не скоро доберутся до космических просторов. Им требуется много земли и особые условия. Поэтому жареной картошечкой на орбите космонавты не смогут себя побаловать ещё пару десятилетий.

Так что же растёт на грядках в космосе?

На первом месте японская салатная капуста Мизуна — родственница нашего салата «Русалочка». Она осваивает космическое пространство уже более двадцати лет и восполняет витамины в организме космонавтов.

На втором месте — карликовый горох. Он поразил космонавтов: горох давал жизнеспособные семена пять раз подряд. Их снова и снова отправляли в космическую оранжерею и он благополучно рос, цвел и плодоносил. Поколение за поколением!

На третьем месте — пшеница, которая тоже несколько раз давала семена в космосе: и на станции «Мир», и на международной космической станции (МКС).

На четвертом месте — обычная редиска. После долгих экспериментов удалось выбрать сорт, который наиболее хорошо чувствует себя на орбите. Это редис сорта «Cherry bomb», который успешно формируют корнеплоды даже в невесомости!

Можно ли вырастить урожай без земли?

Космические технологии, основа которых зародилась еще на Земле, доказывают, что многие растения прекрасно растут и развиваются вовсе без почвы. Идея не нова. Считается, что впервые она была предложена ещё в начале 17 века английским философом, политиком, экономистом Френсисом Бэконом.

Пришли столетия. Сегодня существуют две основные методики выращивания растения в космосе без почвы:

«Космические растения живут в специальной оранжерее с искусственным субстратом. Она снабжена автоматическим поливом: там стоят датчики влажности, которые проводят измерения через определённые промежутки времени. Система сама подсчитывает, сколько воды нужно добавить, и сама поливает. При этом в поливную воду ничего не добавляется: питаются растения за счёт удобрений пролонгированного действия, внесённых в субстрат.
С невесомостью «зелёные космонавты» справляются так: корни удерживаются субстратом, а надземные части всегда тянутся к искусственному свету».

Маргарита Левинских, доктор биологических наук, ведущий научный сотрудник ГНЦ РФ «Институт медико-биологических проблем»

Но и это — не окончательный вариант! Прообраз огромной космической оранжереи уже построен на немецкой антарктической станции «Neumayer-Station III», где учёные Института полярных и морских исследований им. Альфреда Вегенера выращивают огурцы, помидоры, сладкий перец и зелень. Это ещё раз подтверждает — все космические технологии берут своё начало на Земле.

Человечество готовится к дальним космическим путешествиям. А успех любой экспедиции на 99 процентов зависит от её подготовки. Поэтому нужно набраться терпения, и ждать когда «на Марсе будут яблони цвести»!

Источник

Космические фермеры: как и зачем выращивать свежие овощи в космосе

7 сентября 2016 года в казахстанской степи приземлился корабль «Союз ТМА-20М», доставивший на Землю космонавтов Алексея Овчинина и Олега Скрипочку, которые провели на орбите полгода. Как только Овчинин выбрался из спускаемой капсулы, коллеги вручили ему свежий арбуз: именно об этом космонавт заранее попросил их. Овчинин не единственный обитатель МКС, скучавший по фруктам. Многие работники станции говорят, что сильнее всего в долгих миссиях не хватает именно привычной неконсервированной еды. Узнаем, как правильно поливать рассаду в невесомости, можно ли удобрять почву других планет экскрементами и как ученые предлагают с помощью водорослей сделать Марс пригодным для жизни.

Зачем космонавтам овощи и фрукты?

Мы с детства помним, что «лук от семи недуг», а «яблоко на ужин — и доктор не нужен», иными словами, фрукты, овощи и зелень — основа здорового питания и источник жизненно важных веществ. Всемирная организация здравоохранения советует взрослым съедать около 400 граммов овощей и фруктов каждый день. Конечно, овощи есть в составе консервированной пищи космонавтов, но со свежими хрустящими плодами на Земле ее не сравнить. С каждым грузовым кораблем на МКС отправляют овощи и фрукты, однако посылок с Земли хватает ненадолго.

Kosmicheskoe zemledelie 1

К тому же со временем замороженная пакетированная пища просто надоедает.

Космонавт Антон Шкаплеров говорит: «Рацион очень разнообразный… Но всё это, конечно, не свежее: либо в консервах, либо восстановленное. Через месяц-два это всё приедается и толком ничего есть не хочешь, аппетита нет как такового… ешь просто потому, что надо есть».

Это не просто грустно — из-за недостатка аппетита космонавты часто теряют в весе, замечает норвежский биолог Силье Вольф. Эти проблемы во многом могут решить собственные грядки на борту.

Космические огороды полезны и для психики астронавтов. Источников постоянного стресса у них предостаточно: это и высокий риск, и нестандартные ситуации в работе, и даже замкнутое пространство станции, где сложно хотя бы ненадолго остаться наедине с собой. Известно, что садоводство помогает снизить проявления депрессии и уровень тревожности, а также улучшает субъективное ощущение благополучия. Ученые из Университета Флориды собрали свидетельства советских и американских космонавтов и пришли к выводу, что это работает и в условиях орбитальных станций. Например, американку Пегги Уитсон, проводившую на МКС эксперимент с соей, изумила собственная реакция на ростки в бортовой теплице: «Я думаю, возможность впервые за полтора месяца на станции увидеть что-то зеленое произвела на меня по-настоящему сильное впечатление».

Астронавта Дона Петтита работа с растениями впечатлила настолько, что он опубликовал в своем блоге целый дневник от лица орбитального цукини: «Ничто не сравнится с запахом живой зелени в этом лесу инженерных машин».

Сегодня технологии космического земледелия разрабатывают для станций на орбите Земли, но у биологов есть и другие цели, куда более масштабные. Исследователи и энтузиасты всё чаще говорят о колонизации других планет. В планах и проектах появляются конкретные цифры: сколько будет длиться перелет и сколько людей смогут стать первыми колонистами. Дорога, например, на Марс займет долгие месяцы, еще дольше людям придется обживать новую колонию. Как считает эксперт программы МКС в NASA Джули Робинсон, даже самые современные технологии консервации и заморозки не позволят так долго сохранять все нужные питательные вещества в пище переселенцев.

На одних консервах новому поселению не выжить, полагаться на поставки с Земли рискованно, поэтому нужны методы, которые позволят выращивать растения самостоятельно. Тестировать их придется в самых суровых условиях — ведь на том же Марсе колонистов ждет пыль вместо плодородной почвы и жесткий ультрафиолет вместо ласковых солнечных лучей, отфильтрованных земной атмосферой.

Почему садоводство в космосе — это так сложно?

Первые шаги к космическим плантациям человечество сделало еще в начале 1980-х, когда космонавтам станции «Салют-7» удалось получить семена резуховидки Таля. Это небольшое растение из семейства капустных стало для исследователей растений тем же, чем плодовая мушка дрозофила для биологии животных: полный цикл развития резуховидка Таля может пройти всего за 6 недель. С тех пор на орбите вырастили немало культур, от салата до пшеницы, но эти урожаи в лучшем случае становятся приятной добавкой к пище: полностью обеспечить овощами обитателей космических станций не удастся еще долго.

Что именно мешает создать и возделывать «шесть соток» за пределами Земли? Авторы обзорной статьи в журнале Botany Letters называют несколько причин. Самая очевидная из них — микрогравитация : и на околоземной орбите, и на потенциальных планетах-колониях сила тяжести меньше привычной нам. Слабая гравитация влияет на многие особенности развития организмов, и растения не исключение. В экспериментах, где одни и те же культуры высаживали на Земле и на МКС, некоторые виды на орбите заметно теряли во вкусе и питательности. Например, в «космических» зародышах репы Brassica rapa оказалось гораздо меньше крахмала и белка (на 24 %). Температура воздуха, влажность и уровень освещенности вокруг растений на станции практически совпадали с земными, поэтому ученые считают, что во всем виновата низкая гравитация. Возможно, дело в том, что в невесомости растения начинают «задыхаться»: вода в таких условиях обволакивает корни более толстым слоем, вызывая кислородное голодание.

Kosmicheskoe zemledelie 3

Говоря об «огородах» на космических станциях, ученые настроены скорее оптимистично: большую часть этих проблем можно решить, если изучить, какие условия нужны растениям и какие виды лучше всего переносят отсутствие привычной среды.

Сложнее придется будущим колонистам других планет, ведь «почва» новых миров может преподнести много неприятных сюрпризов.

Наша земная почва, дающая жизнь растениям, — это сложная система, где одинаково важны и минералы, и органика. На Марсе, например, ситуация совсем другая. Поверхность Красной планеты покрыта реголитом — мелким песком и пылью, которые образуются, когда скальные породы разрушаются из-за ветра, колебаний температуры и ударов метеоритов. Эта пыль не просто безжизненна, для растений она опасна: в ней содержатся токсичные соединения, в том числе перхлораты — соли хлорной кислоты.

Китайские ученые выяснили, как похожая концентрация перхлоратов в воде отражается на нескольких видах растений: токсины заметно уменьшили и стебли, и корни. Кроме того, перхлораты накапливались в листьях, поэтому включить такие растения в рацион не получится. А еще соли хлорной кислоты не позволят заселить поверхность Марса земными бактериями, чтобы создать плодородный слой перегноя. Эксперименты шотландских астробиологов показали, что перхлораты усиливают бактерицидный эффект ультрафиолета, поэтому бактерии нашей почвы просто не выживут на поверхности Марса.

Возможно, от идеи огородов на марсианском реголите придется отказаться вовсе, сосредоточившись на других методах — в первую очередь на технологиях гидропоники и аэропоники.

Kosmicheskoe zemledelie 4

Чем можно заменить почву

Сегодняшние способы космического садоводства можно условно разделить на те, для которых нужен относительно плотный субстрат (скажем, почва или глина), и те, где главную роль играют вода и жидкие растворы.

Установка Vegetable Production System (Veggie), которая с 2014 года снабжает МКС свежей зеленью, ближе к первому типу.

В Veggie семена прорастают в специальных подушечках, где кальцинированная глина смешана с капсулами, в которых находятся удобрения. Полимерная оболочка капсул постепенно разрушается, вовремя выпуская очередную порцию подкормки. Конструкцию освещают зеленые, красные и синие светодиоды — во время экспериментов астронавты периодически меняют режим освещения, чтобы выяснить, что лучше всего подходит определенным растениям. В установке есть система автоматического полива при помощи капилляров, но иногда астронавты поливают орбитальный огород сами. Например, так пришлось поступить Скотту Келли, чтобы спасти от неожиданной засухи цветы циннии.

Когда Veggie отслужит свое, ее планируют заменить более крупной установкой — полностью автоматической «теплицей» Advanced Plant Habitat (APH). В ней можно будет регулировать множество параметров, в том числе влажность, давление, освещенность, объем подаваемого кислорода и питательных веществ, и даже измерять температуру отдельных листьев. В NASA любят говорящие аббревиатуры, поэтому систему контроля множества параметров назвали PHARMER (Plant Habitat Avionics Real-Time Manager in Express Rack). Исследователи из Космического центра Кеннеди уже продумали первые эксперименты с участием APH.

Исследователи намерены привезти на Землю семена, созревшие на МКС, прорастить их в лаборатории и вернуть новое поколение семян на станцию, чтобы выяснить, как на них скажутся такие сильные перепады гравитации.

Немало экспериментов провели и космонавты российского сегмента МКС. С 2002 по 2011 год в автоматической оранжерее «Лада» выросли два сорта ячменя, редис, «японская капуста» мизуна, карликовая пшеница и карликовый же горох. Эти опыты показали, что многие важнейшие функции растений, например оплодотворение и формирование зародышей, в космосе не меняются.

Несколько лет назад в Институте медико-биологических проблем (ИМБП) РАН создали новую оранжерею «Лада-2», в которой планировали выращивать пшеницу, салат и сладкий перец. К сожалению, «Лада-2» погибла при аварии грузового корабля «Прогресс МС-04» в 2016 году. Создавать новую оранжерею взамен утраченной в ИМБП не планируют: процесс займет несколько лет, к этому моменту цикл работы МКС может подойти к концу. Сейчас российские космонавты проводят эксперименты на оборудовании американского сегмента станции. Возможно, в будущем в космос отправится другая российская разработка, оранжерея «Витацикл-Т» с вращающимся цилиндром внутри.

Просто добавь воды: гидро- и аэропоника

Необходимость использовать для «грядок» почву или глину — скорее недостаток в условиях космического перелета. Твердый субстрат много весит, емкость грузовых кораблей и отсеков всегда ограничена, к тому же на станции частицы земли могут попасть в вентиляцию, а на будущих планетах-колониях подходящей почвы не найти. Поэтому исследователи всё чаще смотрят в сторону методов, в которых зелень и овощи растут в воде, — гидропоники и аэропоники.

«Огород» в жидком растворе, богатом питательными веществами, — идея далеко не новая, о таком способе писал еще Фрэнсис Бэкон в начале XVII века. С тех пор появилось множество методик садоводства без использования почвы, так что создателям космических технологий есть из чего выбирать. Например, можно держать корни в воде постоянно или использовать методику прилива-отлива, а также использовать разнообразные субстраты, удерживающие нужное количество жидкости.

Kosmicheskoe zemledelie 5

Гидропонику и аэропонику уже давно успешно используют на Земле. Они позволяют собирать урожаи даже в экстремальных условиях — например, в Антарктике.

Ученые из немецкого Института полярных и морских исследований им. Альфреда Вегенера уже несколько лет выращивают огурцы, помидоры, сладкий перец и зелень на антарктической станции Neumayer-Station III.

Аэропоническую теплицу обустроили в отдельном здании, и, когда метель не дает ученым добраться туда из основного строения, поливом и освещением могут дистанционно управлять их коллеги из Германии. Биологи говорят, что одна из основных задач их работы — подготовить новые методики садоводства для тестирования в космических условиях.

Как на вулкане: эксперименты c аналогами реголитов

Несмотря на перспективы гидропоники, среди ученых есть и сторонники садоводства на основе грунта других планет. Такие эксперименты с 2013 года идут в Нидерландах. Биологи из Вагенингенского университета выращивают овощи в искусственном грунте, максимально напоминающем по составу реголиты с поверхности Марса и Луны. «Марсианский» грунт делают из вулканического пепла и песка с Гавайев, а «лунный» — из песка пустыни в Аризоне. Чтобы повторить текстуру реголита, материал дополнительно измельчают в пыль.

Ученые собрали уже более десятка урожаев, в их продуктовой корзине помидоры, горох, редис, рожь, зеленый лук и другие растения. Первые тесты показали, что уровень токсичных тяжелых металлов в овощах не превышает допустимые нормы (впрочем, новые урожаи еще проверят много раз).

В 2017 году в марсианский образец грунта поселили червей, и они не только выжили, но и дали потомство.

Руководитель проекта Вигер Вамелинк говорит, что дождевые черви могут стать важнейшим звеном земледелия на других планетах: они обогащают почву биогумусом, а их ходы помогают воде и воздуху лучше проникать в грунт.

Конечно, прогнозы Вамелинка очень оптимистичны. Условия на Красной планете суровые: растениям нужно будет не просто выжить в пылевом грунте, но и устоять перед натиском ультрафиолета — уровень излучения на Марсе намного выше, чем на Земле, поскольку нашу планету защищает озоновый слой. Не стоит забывать и о токсичных перхлоратах: неизвестно, найдется ли способ очистки грунта и сколько это будет стоить. Впрочем, даже если разбить на Марсе огороды по методу Вамелинка не выйдет, результаты его работы пригодятся на Земле — например, помогут выявить растения, дающие стабильный урожай на вулканических почвах.

Новая Земля: проекты терраформирования других планет

Каждый из этих экспериментов — маленький шаг к будущему космического садоводства, но среди ученых есть и те, кто мыслит по-крупному. Сторонники идеи терраформирования предлагают не ограничиваться небольшими огородами и теплицами: они намерены с нуля создать на какой-либо другой планете условия, пригодные для жизни земных растений и животных. Проблема в том, что найти вторую Землю непросто: начинать придется даже не с нуля, а с серьезного «минуса».

Самый популярный кандидат на роль Земли 2.0 — конечно, Марс. Он находится по космическим меркам недалеко от нас, обладает запасами водяного льда и атмосферой — очень разреженной, но все-таки способной хоть немного защитить от радиации. Проекты терраформирования в основном фокусируются как раз на уплотнении атмосферы. Например, группа Джима Грина, директора отдела по изучению планет NASA, предложила окружить Красную планету оболочкой искусственного магнитного поля. Создавать его, по плану Грина, будет космический аппарат, находящийся в точке Лагранжа L1 между Солнцем и Марсом. Как именно должно работать это устройство, астрофизик не уточнил.

Kosmicheskoe zemledelie 6

По словам Грина, магнитный щит «растопит» замерзший углекислый газ в ледяных шапках на полюсах Марса, это запустит парниковый эффект, и температура на планете может подняться на несколько градусов. Этого хватит, чтобы растопить часть водяного льда, а также постепенно поднять атмосферное давление, приближая Марс к земным условиям. Впрочем, в 2018 году эксперты NASA заявили, что «разогреть» Марс с помощью CO2 не выйдет — по крайней мере, при сегодняшнем уровне технологий. По словам Брюса Якоски и Кристофера Эдвардса, на Марсе не хватит углекислого газа для воплощения подобных проектов.

Еще одна смелая идея — изменить марсианскую атмосферу с помощью цианобактерий (синезеленых водорослей). Эти небольшие организмы способны к фотосинтезу: считается, что именно они «надышали» значительную часть того кислорода, который способствовал «кислородной революции» в начале протерозоя. В 2018 году международная группа ученых выяснила, что цианобактерии могут производить газ при очень низком уровне освещенности.

Синезеленые водоросли способны выдержать очень суровые условия, некоторые из них являются экстремофилами — возможно, какие-то из них выживут и на Марсе.

Пока терраформинг остается скорее мечтой, чем конкретной стратегией. Но авторы этих концепций сходятся во мнении: земные технологии быстро развиваются, и спустя десятилетия мы сможем говорить об освоении других планет куда конкретнее. Кто знает, вдруг и марсианские яблони станут реальностью?

Источник

Поделиться с друзьями
admin
Руководства на каждый день
Adblock
detector